

Universitätsklinikum

Heinrich Heine The impact of MRI image quality on statistical and predictive analysis of Voxel-Based Morphology

JÜLICH

Felix Hoffstaedter^{1,2*}, Nicolás Nieto^{1,2}, Simon B. Eickhoff^{1,2} & Kaustubh R. Patil^{1,2}

Institute of Systems Neuroscience, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; ² Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Germany; *f.hoffstaedter@fz-juelich.de

Introduction

- T1w image quality significantly impacts derivative measures of brain morphology:
 - Within scanner motion reduce gray matter volume & cortical thickness estimates
- Accurate image quality assessment is critical for clinical diagnoses & research:
 - No generally applicable quality standards or thresholds available
- Several tools provide image quality measures (IQM): i.e. MRIQC, CAT12, Freesurfer
- Expert ratings show good to moderate but variable alignment with different IQMs
- > Impact of quality on classical statistics or machine learning analysis is unclear
- Commonly, images with severe artifacts are excluded from analyses
- > Aim 1: Demonstrate the impact of image quality on univariate analysis
- > Aim 2: Demonstrate the impact of quality on prediction models
- Data: AOMIC 1k P1/2, eNKI, CamCAN, SALD, 1000brains, GSP, DLBS
- Effect of sex/gender on gray matter volume > Target:

Methods

Generation of sub-samples of low/high image quality

Image preprocessing

- T1w segmentation with CAT12.8.1 (r2042)
- Modulated gray matter smoothed 4mm FWHM resampled at 8mm³
- **❖** 3747 gray matter features
- Image Quality Rating (IQR) for raw T1w from CAT12

Male=43%, IQR median=2.16

eNKI (n=813, Male=35%, IQR median=2.19)

CamCAN (n=650, Male=49%, IQR median=2.3)

Quality sub-sampling

- Massive age effects in VBM
- Balancing for age & sex

Male=42%, IQR median=2.54

- Divide into 3/10 age bins II. Retain same N for each sex
- III.Takes 60% lowest/highest IQR
- low/high quality sub-samples

g 25

2.00

2.25

2.50

		Sub-samples			
	Site	Original N	N	N share (%)	IQR Diff
	AOMIC_ID1000	922	356	82 (23%)	0.128
	AOMIC-PIOP2	226	72	4(5%)	0.299
	AOMIC-PIOP1	215	72	7(9%)	0.291
	GSP	1570	528	79(14%)	0.149
	eNKI	812	264	26(9%)	0.098
	CamCAN	650	348	91(26%)	0.389
	SALD	494	204	24(11%)	0.315
	1000Brains	1126	416	111(26%)	.0.479
	DLBS	283	114	9(7%)	0.595

Data

Full samples image quality, sex and age

Sub-sample image quality

AOMIC ID1000 n=712 (male=50%)

AOMIC-PIOP2 n=144 (male=50%)

GSP n=1056 (male=50%)

eNKI n=528 (male=50%)

CamCAN n=696 (male=50%)

SALD n=408 (male=50%)

Sampling Q High Q, Median IQR=1.93 Low Q, Median IQR=2.02

Sampling Q High Q, Median IQR=1.99 Low Q, Median IQR=2.3

High Q, Median IQR=2.32 Low Q, Median IQR=2.53

Sampling Q

High Q, Median IQR=2.49

Low Q, Median IQR=2.59

Sampling Q

High Q, Median IQR=2.04

Sampling Q High Q, Median IQR=2.18

Low O, Median IQR=2.49

Sampling Q High Q, Median IQR=2.2

3.75

Low Q, Median IQR=2.4

Feature wise t-test after brain size regression

-- High Quality Mean

High Quality Mean

Training data

DLBS (n=315, Male=37%, IQR median=2.82)

Low Q, Median IQR=2.47 1000Brains n=832 (male=50%) Sampling Q High Q, Median IQR=2.3 Low Q, Median IQR=2.69 DLBS n=228 (male=50%) Sampling Q High Q, Median IQR=2.52 5.0 Low Q, Median IQR=3.14

Sex/gender prediction via logistic regression leakage-free confound regression of total intracranial volume 5 fold cross validation with 5 repetitions

3.00

3.25

Discussion

- In mass uni-variate analyses, poorer image quality results in lower sensitivity for sex differences.
 - > Higher image quality with lower N might help detecting effects in classical group comparisons.
- Machine learning based sex classification is largely independent of image quality for acceptable scan quality.
- > Machine learning models in contrast to classical statistics seem quite robust to variable image quality.

References

중 3.0

- [1] Gilmore et al. Brain Inform. 2021 Apr 15;8(1):7. doi: 10.1186/s40708-021-00128-2. [2] Reuter et al. Neuroimage. 2015 doi: 10.1016/j.neuroimage.2014.12.006.
- [3] Sujit et al. J Magn Reson Imaging. 2019 doi: 10.1002/jmri.26693.
- [6] Wei et al. Sci Data. 2018. doi: 10.1038/sdata.2018.134.
- [4] Rosen et al. Neuroimage. 2018, doi: 10.1016/j.neuroimage.2017.12.059. [5] Antonopoulos et al. Neuroimage. 2023. doi: 10.1016/j.neuroimage.2023.120292.
- [7] Nooner et al. Front Neurosci. 2012. doi: 10.3389/fnins.2012.00152. [8] Taylor et al. Neuroimage. 2017. doi: 10.1016/j.neuroimage.2015.09.018. [9] Gaser et al. Gigascience. 2024. doi: 10.1093/gigascience/giae049.